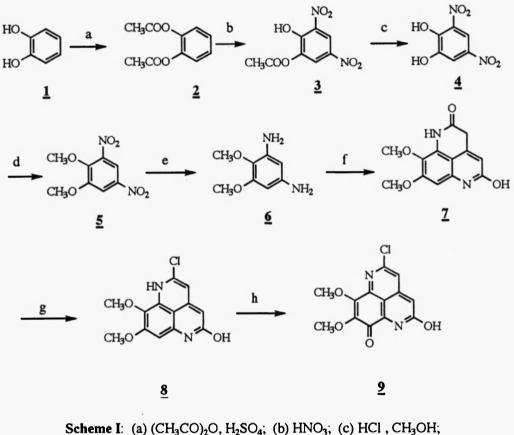

SYNTHESIS OF THE PYRIDINO[4,3,2-de]QUINOLINE NUCLEUS: A DERIVATIVE OF THE DISCORHABDIN ALKALOIDS

Qizhu Ding and J. William Lown*

Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2

Abstract: A novel method of synthesis from catechol of the pyridino[4,3,2-de]quinoline nucleus structurally related to discorhabdin alkaloids is developed. Proof of the position of the chlorine substituent in the key chlorination step was obtained by x-ray diffraction analysis of an intermediate <u>8</u>.


In a search for antiviral and antitumor compounds from marine sources, some highly cytotoxic extracts were found from heavily pigmented green and brown sponges of the genus *Latronlia du Bocage* (family Latronliidae, order Hadromerida) (1). Initial work on the New Zealand *Latronculia* extract showed that the cytotoxity was due to a polar pigment. Three pigments were identified and named as discorhabdins A, B, and C (2). Bioassay showed that these compounds were not only active against certain viruses but also against some cancer cells (active *in vitro* against P338 with ED50 0.03, 0.05 and 0.1 μ g/ml, respectively) (3). Further investigation of this group of compounds resulted in the isolation of a series of cytotoxic compounds in sponges and other marine sources, such as makaluvamines (4), damirones A and B (5), batzellines (6) and isobatzellines (7). Recently some new cytotoxic compounds were found, such as tsitsikammamines (8) and veiutamine (9).

Most of these cytotoxic compounds contain the structurally novel pyrrolo[4,3,2-de] quinoline nucleus. Many research groups (10) were therefore interested in the synthetic chemistry and physiological properties of this pyrrolo[4,3,2-de] quinoline nucleus and its derivatives.

Some cytotoxic compounds containing the pyridino[4,3,2-de]quinoline nucleus were also found in sponges and other marine sources. Amphimedine (11), isolated from a sponge, was active against P338 cells *in vitro* (Ed50 2.8 μ g/ml). 2-Bromoleptoclinidone (12), isolated from an ascidian, also active against p338 cells *in vitro* and with higher activity (ED50 0.4 μ g/ml). Interestingly all of these compounds contain the pyridino[4,3,2*de*]quinoline nucleus. However, the synthetic chemistry and physiological properties of this kind of pyridino[4,3,2-*de*]quinoline nucleus and its derivatives have not yet been studied.

In our previous paper (13), we described the synthesis of furano[4,3,2-de]quinoline. We describe herein an efficient synthesis of the novel pyridino[4,3,2-de]quinoline nucleus (scheme I).

Scheme I: (a) $(CH_3CO)_2O$, H_2SO_4 ; (b) HNO_3 ; (c) HCl, CH_3OH ; (d) Me_2SO_4 , K_2CO_3 ; (e) $H_2/Pd/C$; (f) $(EtOCOCH_2)CO$; (g) i. $POCl_3$, ii. H_2O ; (h) H_2O_2 , CH_3COOH

This methodology starts from the commercially available catechol. The catechol $\underline{1}$ was first treated with acetic anhydride to produce 1,2-diacetoxybenzene $\underline{2}$. Compound $\underline{2}$ was nitrated by fuming nitric acid to produce 6-acetoxy-2,4-dinitrophenol $\underline{3}$. Dinitrophenol $\underline{3}$ was deprotected by hydrochloric acid to produce 3,5-dinitro-1,2-dihydroxybenzene $\underline{4}$. Compound $\underline{4}$ was then methylated with dimethylsulfate to produce the key intermediate

1,2-dimethoxy-3,5-dinitrobenzene 5 (97% yield) (14). Compound 5 was reduced by catalytic hydrogenation then cyclized using diethyl 1,3-acetonedicarboxylate to produce the tricyclic intermediate 5-hydroxy-8,9-dimethoxy-1,2,3-trihydropyridino[4,3,2-de]quinolin-2-one 7 (62% yield) (15). Compound 7 was chlorinated with POCl3 then hydrolyzed to produce the monochloro product 2-chloro-5-hydroxy-8,9-dimethoxy-1-hydropyridino[4,3,2-de]quinoline 8 (89% yield) (16). In order to identify the position of the chlorine atom in this monochloro product, we have carried out an x-ray crystallographic determination. The results of crystallography (see figure 1, table 1 and table 2) showed that this monochloro product is 2-chloro-5-hydroxy-8,9-dimethoxy-1-hydropyridino[4,3,2-de]quinoline 8. Finally compound 8 was oxidized with hydroperoxide in acetic acid to afford the pyridino[4,3,2-de]quinoline nucleus 9 (17) as a violet crystalline product (72% yield).

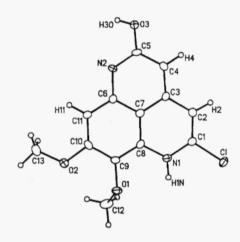


Figure 1. X-ray crystal structure (18) of 2-chloro-5-hydroxy-8,9-dimethoxy-1-hydropyridino[4,3,2-*de*]quinoline **8**

Table 1. Selected interatomic distances (Å) of 2-chloro-5-hydroxy-8,9-dimethoxy-1-hydropyridino[4,3,2-de]quinoline 8

Atom 1	Atom 2	Distance	Atom 1	Atom 2	Distance
CI	C1	1.729(6)	C2	C3	1.432(8)
01	C9	1.380(7)	C3	C4	1.377(8)
01	C12	1.408(7)	C3	C7	1.423(9)
02	C10	1.367(7)	C4	C5	1.416(8)
O2	C13	1.422(7)	C6	C7	1.416(8)
03	C5	1.281(7)	C6	C11	1.376(8)
N1	C1	1.368(8)	C7	C8	1.423(8)
N1	C8	1.387(7)	C8	C9	1.368(9)
N2	C5	1.353(8)	C9	C10	1.413(8)
N2	C6	1.386(7)	C10	C11	1.388(8)
C1	C2	1.336(8)			

Atom 1	Atom 2	Atom 3	Angle	Atom 1	Atom 2	Atom 3	Angle
C9 C10 C1 C5 C1 C1 C1 N1 C1	O1 O2 N1 N2 C1 C1 C1 C1 C2	C12 C13 C8 C6 N1 C2 C2 C2 C3	115.4(5) 117.8(5) 119.7(5) 122.7(5) 114.0(5) 121.1(6) 124.9(6) 119.0(6)	N2 C7 C3 C6 N1 N1 C7 O1	C6 C6 C7 C7 C8 C8 C8 C8 C8 C9	C11 C11 C8 C8 C7 C9 C9 C9 C8	120.6(6) 121.5(6) 121.7(6) 117.7(6) 117.6(6) 121.2(6) 121.1(6) 118.8(6)
C2 C2 C4 C3 C3 C3 C3 N2 N2 N2	CC CC CC CC CC CC CC CC CC	C4 C7 C7 C5 N2 C4 C4 C4 C7	124.3(6) 117.0(6) 118.7(6) 120.6(6) 118.7(6) 121.7(6) 119.7(6) 117.9(6)	01 C8 02 C9 C6 C3	C9 C9 C10 C10 C10 C11 C7	C10 C10 C9 C11 C11 C10 C6	121.9(6) 119.2(6) 114.2(6) 124.6(6) 121.2(6) 119.2(6) 120.5(6)

Table 2. Selected interatomic angles (deg) of 2-chloro-5-hydroxy-8,9-dimethoxy-1-hydropyridino[4,3,2-de]quinoline 8

Details of the antitumor properties of 9 and its lexitropsin conjugates will be reported in due course.

Acknowledgments. We would like to thank the National Cancer Institute of Canada for financial support of this research (to JWL).

References and Footnotes

- (a) P. R. Bergquist, W. Hofheinz and G. Oesterhelt, Biochem. Syst. Ecol. <u>8</u>, 423 (1980). (b) M. P. Lawson, P. R. Bergquist and R. C. Cambie, Biochem. Syst. Ecol. <u>12</u>, 375 (1984).
- 2. P. R. Bergquist, Sponges, Hutchinson, London (1978).
- 3. M. H. G. Munor, R. T. Luibrand and J. W. Blunt, *Bioorganic Marine Chemistry* (Edited by P. J. Scheuer), Vol. 1, Chapter 4. Verlog Chemie, Heidelberg (1987).
- (a) D. C. Radisky, E. S. Radisky, L. R. Barrows, B. R. Copp, R. A. Kramer, C. M. Ireland, J. Am. Chem. Soc., <u>115</u>, 1632-1638, (1993).
 (b) L. R. Barrows, D. C. Radisky, B. R. Copp, D. S. Swaffar, R. A. Kramer, R. L. Warters, C. M. Ireland, Anti-Cancer Drug Design, 8, 333-347 (1993).
- 5. D. B. Stierle, D. J. Faulkner, J. Nat. Prod. 54, 1131 (1991).
- 6. S. Sakemi, H. H. Sun, Tetrahedron Lett. 30, 2517 (1989).
- 7. H. H. Sun, S. Sekemi, N. Burries, P. McCarthy, J. Org. Chem. 55, 4964-4966 (1990).

Received on January 14, 1998

- 8. G. J. Hooper, M. T. Davies-Coleman, M. Kelly-Borges and P. S. Coetzee, *Tetrahedron Lett.* <u>37</u>, 7135-7138 (1996).
- 9. D. A. Venables, L. R. barrows, P. Lassota and C. M. Ireland, Tetrahedron Lett. <u>38</u>, 721-722 (1997).
- (a) J. D. White, K. M. Yager and T. Yakura, J. Am. Chem. Soc. <u>116</u>, 1831-1838 (1994). (b) E. V. Sadanandan, S. K. Pilai, M. V. Lakshmikantham, A. D. Billimoria, J. S. Culpepper and M. P. Cava, J. Org. Chem. <u>60</u>, 1800-1805 (1995). (c) P. Balczewski, J. A. Joule, C. Estevez and M. Alvarez, J. Org. Chem. <u>59</u>, 4571-4575 (1994). (d) T. Izawa, S. Nishiyama and S. Yamamura, *Tetrahedron*, <u>50</u>, 13593-13600 (1994). (e) R. Zhao, B. Oreski and J. W. Lown, *Bioorg. Med. Chem. Lett.* <u>6</u>, 2169-2172 (1996). (f) R. Zhao and J. W. Lown, *Synth. Commun.* <u>27</u>, 2103-2110 (1997).
- F. J. Schmitz, S. K. Agarwal, S. P. Gunasekera, P. J. Schnitz and J. N. Shoolery, J. Am. Chem. Soc. <u>105</u>, 4835 (1983).
- 12. S. J. Bloor, F. J. Schmitz, J. Am. Chem. Soc. 109, 6134 (1987).
- 13. Q. Ding, R. Zhao and J. W. Lown, Heterocyclic Commun. (in press).
- 14. Compound <u>5</u>: Calcd for C₈H₈N₂O₆ 228.0382, found 228.0381 (M⁺, 100%); ¹H NMR (CDCl₃): δ 8.25 (d, J = 2 Hz, 1 H, Ar-H), 7.95 (d, J = 2 Hz, 1 H, Ar-H), 4.11 (s, 3 H, OCH₃), 4.01 (s, 3 H, OCH₃).
- 15. Compound <u>7</u>: Calcd for C₁₃H₁₂N₂O₄ 260.0797, found 260.0783 (M⁺, 77%); ¹H NMR (dmso-d₆): δ 11.44 (s, 1 H, OH), 10.00 (s, 1 H, NH), 6.48 (s, 1 H, Ar-H), 6.04 (t, 1 H, Py-H), 3.86 (d, 2 H, CH₂), 3.82 (s, 3 H, OCH₃), 3.65 (s, 3 H, OCH₃).
- 16. Compound <u>8</u>: Calcd for C₁₃H₁₁N₂O₃Cl 278.0458, found 278.0439 (M⁺, 100%); ¹H NMR (dmso-d₆): δ
 10.58 (s, 1 H, OH), 10.50 (s, 1 H, NH), 6.32 (s, 1 H, Ar-H), 5.83 (s, 1 H, Ar-H), 5.28 (s, 1 H, Ar-H),
 3.78 (s, 3 H, OCH₃), 3.62 (s, 3 H, OCH₃).
- 17. Compound <u>9</u>: Calcd for C₁₃H₉N₂O₄Cl 292.0251, found 292.0264 (M⁺, 54%); ¹H NMR (dmso-d₆): δ
 11.69 (s, 1 H, OH), 7.88 (s, 1 H, Py-H), 7.71 (s, 1 H, ClPy-H), 3.97 (s, 3 H, OCH₃), 3.89 (s, 3 H, OCH₃).
- The crystal structure was solved using the program SHELXL93: Sheldrick, G. M. SHELXL93, University of Göttingen, 1993.

Received on December 18, 1997